Units for Measuring of Data

A byte is 8 bits. A bit is the most basic unit of data measurement. B represents a byte, and b represents a bit A bit can be 0 or 1.

Converting Between	Units of Measurement	Examples of Converting	
Size	Unit		
1,000 bytes	1 kilobyte - KB	80 bits = 80/8 = 10 bytes	
1,000 kilobytes - 1,000 KB	1 megabyte - MB	8,000 Bytes = 8,0000 / 1,000 = 8 KB	
1,000 megabytes - 1,000 MB	1 gigabyte - GB	2,400 KB = 2,400 / 1,000 = 2.4 MB	
1,000 gigabytes - 1,000 GB	1 terabyte - TB	3,500 MB = 3,400 / 1,000 = 3.4 GB	

Decimal (Base 10)	Binary (Base 2)	Hexadecimal (Base 16)
This is the number system	Used by computers	Used to represent larger
we are most used to.	to represent all data.	numbers.
10 characters, 0-9	2 characters, 0 and 1	16 characters, 0-9 and A - F
1, 2, 20, 40, 999	0, 000, 01010,	1, 6, A, AF, 1A, AB1E8
	00101010	

Creating a Hoffman Tree 1. Count how many times each character appears in the string.

- a. Write the list in order with the most common letter. b. Characters with the same value can be placed in any order.
- 2. Add together the number of the two least common characters in a new block and label it with the total.
- 3. Move the new block into the list based on its number.
- 4. Repeat steps 2 and 3 until only one block remains.
- 5. Label the "branches" in the tree, working from the top down.

a. Label the branches going in one direction 1 and the other 0 Encoding the binary stream

The tree can be compressed into a single string.

- 1. Start at the top node.
- 2. Encode each letter using the path of 1s and 0s.
- 3. Join the stream together

Calculating the Bits Needed to Store Compressed Strings

- 1. Take the length of the bit pattern for each character.
- 2. Multiply it by the times the pattern is used.
- 3. Add this together for each character.

Calculating the Bits Needed to Store Uncompressed ASCII 1. Number of characters x 7

Hoffman Coding

- A way to reduce the number of bits needed to send or store a message
- A lossless compression method.
- . Looks at how often a data item, for example a character in a string, occurs.
- Tries to use fewer bits to store common data which frequently occurs.
- Comprised of:
- A Huffman tree, giving each character a unique code
- A binary stream of the character sequence

Unit 3: Fundamentals of Data Representation

Maths in Binary	Images in Bi	nary	Run Length Encoding	Character Encoding		
Addition	Images are broken down	using a grid.	(RLE)	 Because computers work in binary, all 		
Always follow these for rules:	• Each square in the grid is	known as a pixel.	A lossless	characters must be stored in binary.		
• $0 + 0 = 0$	 Pixel is short for Picture E 	lement.	compression	 The characters which a computer can use 		
• 1 + 0 = 1	Colour Depth		method.	are called a Character Set.		
 1 + 1 = 10 (binary for decimal 2) 	 The more colours an image 	ge uses, the more	 Relies on the original 	• A character code is the number assigned to		
 1 + 1 + 1 = 11 (binary for decimal 3) 	bits per pixel are used. Th	is is called the	data having	a character within a character set.		
Multiplication	Colour Depth.		repeating digits.	 When storing and transmitting characters, 		
To multiply move the digits to the left and fill the gaps	 The greater the colour de 	pth, the larger	 Finds patterns in the 	the computer will use the character code.		
after the shift with 0:	the image file will be.		original data to save	Character codes are grouped together, and		
• To multiply by two, all digits shift one place to the left	Image Size		space.	run in order within that group.		
• To multiply by four, all digits shift two places to the	• The size of an image is me	easured in the	Runs of data are	• For example, in ASCII A is 65, B is 66 and so		
left, etc., etc.	number of pixels used.		sequenced within	on.		
Division	This is written as pixels wi	· •	the original data	This makes it easy to calculate different		
To divide move the digits to the right and fill the gaps	• For example, 5x5, 20x40,	or 1024x768.	which have the same	character codes.		
after the shift with 0:	File Size		value.	ASCII (American Standard Code for		
• To divide by two, all digits shift one place to the right	height in pixels X width in	pixels X colour	• These runs are	Information Interchange)		
• To divide by four, all digits shift two places to the	depth per pixel	lun in huden	stored in	Ascii uses 7 bits, giving a character set of		
right, etc., etc.	 Dividing by 8 gives the value 	lue in bytes	frequency/data pairs.	128 characters.		
These are represented the ASC						
Sound in Binary		Co	ompression	 Each character has its own assigned numbers, some examples are below. 		
• Sound is analogue, so must be converted to binary for computers to understand it.		Ways to reduce	the amount of storage	 Included in the table are: 		
• The amplitude (volume) of the sound is measured at a point in time, this is called		space required for data		 32 control codes - mainly to do with 		
sampling.		 Large files are difficult and expensive to store and transmit. Compression techniques reduce file sizes. 		printing		
Many samples are put together to represent the sound.				 32 punctuation codes, symbols, and 		
Amplitude - The height of the sound wave at the time it was sampled. The higher				space		
the amplitude the louder the sound.		 There are many different ways to 		 26 upper case letters 		
Sample Rate		compress data	each with their own pros			

- Sample Rate
- The sample rate is the number of samples taken in one second.
- It is measured in Hertz (Hz).
- 1 Hertz = 1 sample per second.
- Small sampling interval = high sample rate = better guality sound file = larger file. Sample Resolution
- The sample resolution is the number of bits used to store each sample.
- The higher the sample rate the more accurate the representation is, but the more space needed.

Calculating Sound File Sizes

- The elements above can be used to calculate the file size of a sound file.
- Larger files will give a more accurate representation of the original sound.

- compress data, each with their own pros and cons.
- It is important to balance the reduction in file size with any reduction in quality.
- Different compression techniques will work best in different scenarios.
- Lossy compression means that data is lost and can not be recovered once the file is compressed.
- Lossless means that no data is lost and the original contents of the file can be completely recovered.

- 26 lower case letters
- Numbers 0-9
- Unicode
- The ASCII Character set is too small to hold every character and symbol in English and other languages such as Chinese and Arabic.
- Unicode uses 16 bits, giving a character set of 65,536 characters.
- Unicode uses the same character codes as ASCII up to 127.
- Unicode also includes additional symbols and characters such as emojis.

Converting Between Bases									
Binary to Denary									
1) Draw your conversion table. 128 64 32 16 8 4 2	1								
2) Write the binary number in									
the conversion table. 128									
+ •									
3) Add together all numbers ' o with a 1 beneath them 4									
204									
77									
11001100 in binary is 204 in denary									
Denary to Binary									
1) Draw your conversion table. 128 64 32 16 8 4 2	1								
2) Is the number higher than the first column in the table? 1 1 0 0 1 0 0	0								
a) If so, put a 1 in that column and work out the difference 200 - 128 = 72									
and work out the difference. $200 - 128 = 72$ b) If not, put a 0 in that column.									
3) Repeat the step above with the $72 - 64 = 8$									
difference.									
 4) Keep going until the difference is 0, put a 0 in any empty columns. 8 - 8 = 0 									
 Read the number from the bottom row of the table. 200 in denary is 11001000 in bi 	nary								
Denary to Hexadecimal									
1) Divide the denary number by 16 and write down both the answer and the remainder. $62 \div 16 = 3 \ R \ 14 \ \uparrow \frac{0 \ 0}{1 \ 1}$									
2) Divide the answer by 16 again. Write down both the answer and the remainder. $3 \div 16 = 0 R 3$									
3) Keep going until you reach an answer of 0.									
4) Read the remainders from bottom to top. 3 14 $\frac{5}{9}$ $\frac{9}{9}$									
5) Convert each remainder to hex. 3E	11 B 12 C								
62 in binary is 3E in hexadecimal	13 D 14 E								
Binary to Hexadecimal									
3	0 0								
1) Draw two separate conversion tables. 8 4 2 1 8 4 2 1	1 1 2 2								
2) Write the binary number across both tables.	3 3 4 4 5 5								
3) For each table, add up the $4+2=6$ $8+4+1=13$ humbers which have a 1 beneath them.	6 6 7 7 8 8 9 9								
4) Convert each number to 6 D	10 A 11 B 12 C								
01101101 in binary is 6D in hexadecimal	13 D 14 E 15 F								