Electricity and Magnetism

	Working towards Mastery (W)	Meeting Mastery (M)	Beyond Mastery (B)
Electromag- netism	 An electromagnet uses the principle that a current through a wire causes a magnetic field. Its strength depends on the current, the core and the number of coils in the solenoid. The magnetic field of an electromagnet decreases in strength with distance. 	 Use a diagram to explain how an electromagnet can be made and how to change its strength. Explain the choice of electromagnets or permanent magnets for a device in terms of their properties. 	 Critique the design of a device using an electromagnet and suggest improvements. Suggest how bells, circuit breakers and loudspeakers work, from diagrams.
Magnetism	 Magnetic materials, electromagnets and the Earth create magnetic fields which can be described by drawing field lines to show the strength and direction. The stronger the magnet, and the smaller the distance from it, the greater the force a magnetic object in the field experiences. Two 'like' magnetic poles repel and two 'unlike' magnetic poles attract. Field lines flow from the north-seeking pole to the south-seeking pole. 	- Use the idea of field lines to show how the direction or strength of the field around a magnet varies. -Explain observations about navigation using Earth's magnetic field.	 Predict the pattern of field lines and the force around two magnets placed near each other. Predict how an object made of a magnetic material will behave if placed in or rolled through a magnetic field.

Current	 Current is a movement of electrons and is the same everywhere in a series circuit. Current divides between loops in a parallel circuit, combines when loops meet, lights up bulbs and makes components work. Around a charged object, the electric field affects other charged objects, causing them to be attracted or repelled. The field strength decreases with distance. Similarly charged objects repel, two differently charged objects attract. 	 Describe how current changes in series and parallel circuits when components are changed. Turn circuit diagrams into real series and parallel circuits, and vice versa. Describe what happens when charged objects are placed near to each other or touching. Use a sketch to describe how an object charged positively or negatively became charged up. 	 Compare the advantages of series and parallel circuits for particular uses. Evaluate a model of current as electrons moving from the negative to the positive terminal of a battery, through the circuit. Suggest ways to reduce the risk of getting electrostatic shocks.
Voltage and resistance	 In a series circuit, voltage is shared between each component. In a parallel circuit, voltage is the same across each loop. Components with resistance reduce the current flowing and shift energy to the surroundings. Calculate resistance using the formula: resistance (Ω) = potential difference (V) ÷ current (A). 	 Draw a circuit diagram to show how voltage can be measured in a simple circuit. Use the idea of energy to explain how voltage and resistance affect the way components work. Given a table of voltage against current, use the ratio of voltage to current to determine the resistance. Use an analogy like water in pipes to explain why part of a circuit has higher resistance. 	 Predict the effect of changing the rating of a battery or a bulb on other components in a series or parallel circuit. Justify the sizes of voltages in a circuit, using arguments based on energy. Draw conclusions about safety risks, from data on voltage, resistance and current.