<u>Waves</u>

	Working towards Mastery (W)	Meeting Mastery (M)	Beyond Mastery (B)
Sound	 Sound consists of vibrations which travel as a longitudinal wave through substances. The denser the medium, the faster sound travels. The greater the amplitude of the waveform, the louder the sound. The greater the frequency (and therefore the shorter the wavelength), the higher the pitch. 	 Explain observations where sound is reflected, transmitted or absorbed by different media. Explain observations of how sound travels using the idea of a longitudinal wave. Describe the amplitude and frequency of a wave from a diagram or oscilloscope picture. Use drawings of waves to describe how sound waves change with volume or pitch. 	 Suggest the effects of particular ear problems on a person's hearing. Evaluate the data behind a claim for a sound creation or blocking device, using the properties of sound waves. Use diagrams to compare the waveforms a musical instrument makes when playing different pitches or volumes.
Light	 When a light ray meets a different medium, some of it is absorbed and some reflected. For a mirror, the angle of incidence equals the angle of reflection. The ray model can describe the formation of an image in a mirror and how objects appear different colours. When light enters a denser medium it bends towards the normal; when it enters a less dense medium it bends away from the normal. Refraction through lenses and prisms can be described using a ray diagram as a 	 Use ray diagrams of eclipses to describe what is seen by observers in different places. Explain observations where coloured lights are mixed or objects are viewed in different lights. Use ray diagrams to describe how light passes through lenses and transparent materials. Describe how lenses may be used to correct vision 	 Use a ray diagram to predict how an image will change in different situations. Predict whether light will reflect, refract or scatter when it hits the surface of a given material. Use ray diagrams to explain how a device with multiple mirrors works.

	model.		
Wave Effects	- When a wave travels through a substance, particles move to and fro. Energy is transferred in the direction of movement of the wave. Waves of higher amplitude or higher frequency transfer more energy.	 Explain differences in the damage done to living cells by light and other waves, in terms of their frequency. Explain how audio equipment converts sound into a changing pattern of electric current. 	 Suggest reasons why sound waves can agitate a liquid for cleaning objects, or massage muscles for physiotherapy. Evaluate electricity production by wave energy using data for different locations and weather conditions.
Wave Properties	- A physical model of a transverse wave demonstrates it moves from place to place, while the material it travels through does not, and describes the properties of speed, wavelength and reflection.	 Describe the properties of different longitudinal and transverse waves. Use the wave model to explain observations of the reflection, absorption and transmission of a wave. 	 Compare and contrast the properties of sound and light waves. Suggest what happens when two waves combine.