
Name

1 - No Idea

2 - Shaky

3 - OK

4 - Really Secure

Section Topic AQA Learning Objective

1 Understand and explain the term algorithm.

2 Understand and explain the term decomposition.

3 Understand and explain the term abstraction.

4

Use a systematic approach to problem solving and algorithm

creation representing those algorithms using pseudo-code

and flowcharts.

5
Explain simple algorithms in terms of their inputs, processing

and outputs.

6 Determine the purpose of simple algorithms

7
Understand that more than one algorithm can be used to

solve the same problem.

8

Compare the efficiency of algorithms explaining how some

algorithms are more efficient than others in solving the same

problem.

9
Understand and explain how the linear search algorithm

works.

10
Understand and explain how the binary search algorithm

works.

11 Compare and contrast linear and binary search algorithms.

12 Understand and explain how the merge sort algorithm works.

13 Understand and explain how the bubble sort algorithm works.

14 Compare and contrast merge sort and bubble sort algorithms.

15 Understand the concept of a data type

16
Understand and use the following appropriately: • integer •

real • Boolean • character • string.
Use, understand and know how the following statement types

can be combined in programs:

Variable Declaration

Constant declaration

Assignment

Iteration

Selection

Subroutine (procedure / function)

18

Use definite and indefinite iteration, including indefinite

iteration with the condition(s) at the start or the end of the

iterative structure.
19 Use nested selection and nested iteration structures.

20
Use meaningful identifier names and know why it is important

to use them.
Relational

operations in a

programming

language

21

Be familiar with and be able to use: • equal to • not equal to •

less than • greater than • less than or equal to • greater than

or equal to.

Boolean

operations in a

programming

language

22 Be familiar with and be able to use: • NOT • AND • OR.

23 Understand the concept of data structures.

24
Use arrays (or equivalent) in the design of solutions to simple

problems.

25
Use records (or equivalent) in the design of solutions to

simple problems.

26 Be able to obtain user input from the keyboard

27
Be able to output data and information from a program to the

computer display.

28 Be able to read/write from/to a text file
String handling

operations in a

programming

language

29

Understand and be able to use: • length • position • substring

• concatenation • convert character to character code •

convert character code to character • string conversion

operations.

2
 -

 P
ro

gr
am

m
in

g
AQA GCSE Computer Science PLC

1
 -

 F
u

n
d

am
en

ta
ls

 o
f

A
lg

o
ri

th
m

s

Data types

Programming

concepts

Representing

algorithms

Efficiency of

algorithms

Searching

algorithms

Sorting algorithms

Data structures

Input / output and

file handling

17

Random number

generation in a

programming

language

30 Be able to use random number generation.

31 Understand the concept of subroutines

32 Explain the advantages of using subroutines in programs.

33 Describe the use of parameters to pass data within programs.

34 Use subroutines that return values to the calling routine.

35

Know that subroutines may declare their own variables, called

local variables, and that local variables usually: • only exist

while the subroutine is executing • are only accessible within

the subroutine.

36 Use local variables and explain why it is good practice to do so

37 Describe the structured approach to programming.

38 Explain the advantages of the structured approach.

39 Be able to write simple data validation routines

40 Be able to write simple authentication routines.

41

Be able to select suitable test data that covers normal

(typical), boundary (extreme) and erroneous data. Be able to

justify the choice of test data.

42

Know that there are different levels of programming

language: • low-level language • high-level language. Explain

the main differences between low-level and high-level

languages.

43

Know that machine code and assembly language are

considered to be low-level languages and explain the

differences between them.

44

Understand the advantages and disadvantages of low-level

language programming compared with high-level language

programming.

45
Understand the following number bases: • decimal (base 10)

• binary (base 2) • hexadecimal (base 16).

46
Understand that computers use binary to represent all data

and instructions.

47 Explain why hexadecimal is often used in computer science.

48
Understand how binary can be used to represent whole

numbers.

49
Understand how hexadecimal can be used to represent whole

numbers.

50
Be able to convert in both directions between: • binary and

decimal • binary and hexadecimal • decimal and hexadecimal.

51
Know that: • a bit is the fundamental unit of information • a

byte is a group of 8 bits.

52

Know that quantities of bytes can be described using prefixes.

Know the names, symbols and corresponding values for the

decimal prefixes: • kilo, 1 kB is 1,000 bytes • mega, 1 MB is

1,000 kilobytes • giga, 1 GB is 1,000 Megabytes • tera, 1 TB is

1,000 Gigabytes.
53 Be able to add together up to three binary numbers.

54 Be able to apply a binary shift to a binary number.

55 Describe situations where binary shifts can be used.

56

Understand what a character set is and be able to describe

the following character encoding methods: • 7-bit ASCII •

Unicode.

57
Understand that character codes are commonly grouped and

run in sequence within encoding tables.

58

Describe the purpose of Unicode and the advantages of

Unicode over ASCII. Know that Unicode uses the same codes

as ASCII up to 127.

59
Understand what a pixel is and be able to describe how pixels

relate to an image and the way images are displayed

60
Describe the following for bitmaps: • size in pixels • colour

depth.

2
 -

 P
ro

gr
am

m
in

g
3

 -
 F

u
n

d
am

en
ta

ls
 o

f
D

at
a

R
ep

re
se

n
ta

ti
o

n

Binary arithmetric

Structured

programming

Robust and secure

programming

Classification of

programming

languages

Number bases

Converting

between number

bases

Units of

information

Subroutines

(procedures and

functions)

Represenging

images

Character

encoding

61
Describe how a bitmap represents an image using pixels and

colour depth.

62
Describe using examples how the number of pixels and colour

depth can affect the file size of a bitmap image.

63
Calculate bitmap image file sizes based on the number of

pixels and colour depth.

64 Convert binary data into a black and white image.

65 Convert a black and white image into binary data.

66

Understand that sound is analogue and that it must be

converted to a digital form for storage and processing in a

computer.

67
Understand that sound waves are sampled to create the

digital version of sound.

68
Describe the digital representation of sound in terms of: •

sampling rate • sample resolution.

69
Calculate sound file sizes based on the sampling rate and the

sample resolution.

70
Explain how data can be compressed using Huffman coding.

Be able to interpret Huffman trees.

71

Be able to calculate the number of bits required to store a

piece of data compressed using Huffman coding. Be able to

calculate the number of bits required to store a piece of

uncompressed data in ASCII.

72
Explain how data can be compressed using run length

encoding (RLE).

73 Represent data in RLE frequency/data pairs

Hardware and

software
74

Define the terms hardware and software and understand the

relationship between them.

75
Construct truth tables for the following logic gates: • NOT •

AND • OR.

76
Construct truth tables for simple logic circuits. Interpret the

results of simple truth tables.

77 Create, modify and interpret simple logic circuit diagrams.

78
Explain what is meant by: • system software • application

software. Give examples of both types of software.

79

Understand the need for, and functions of, operating systems

(OS) and utility programs. Understand that the OS handles

management of the: • processor(s) • memory • I/O devices •

applications • security.
80 Explain the Von Neumann architecture

81

Explain the role and operation of main memory and the

following major components of a central processing unit

(CPU): • arithmetic logic unit • control unit • clock • bus.

82

Explain the effect of the following on the performance of the

CPU: • clock speed • number of processor cores • cache size •

cache type.
83 Understand and explain the Fetch-Execute cycle.

84

Understand the differences between main memory and

secondary storage. Understand the differences between RAM

and ROM.
85 Understand why secondary storage is required.

86

Be aware of different types of secondary storage (solid state,

optical and magnetic). Explain the operation of solid state,

optical and magnetic storage. Discuss the advantages and

disadvantages of solid state, optical and magnetic storage.

87 Explain the term 'cloud storage'.

88
Explain the advantages and disadvantages of cloud storage

when compared to local storage.

89
Understand the term 'embedded system' and explain how an

embedded system differs from a non-embedded system.

90
Define what a computer network is. Discuss the benefits and

risks of computer networks.

91

Describe the main types of computer network including: •

Personal Area Network (PAN) • Local Area Network (LAN) •

Wide Area Network (WAN)

3
 -

 F
u

n
d

am
en

ta
ls

 o
f

D
at

a
R

ep
re

se
n

ta
ti

o
n

4
 -

 C
o

m
p

u
te

r
Sy

st
em

s
5

 -
 F

u
n

d
am

en
ta

ls
 o

f
C

o
m

p
u

te
r

N
e

tw
o

rk
s

Represenging

images

Representing

sound

Data compression

Systems

architecture

Software

classification

Boolean logic

Fundamentals of

computer

networks

92

Understand that networks can be wired or wireless. Discuss

the benefits and risks of wireless networks as opposed to

wired networks.

93
Explain the following common network topologies: • star •

bus.

94 Define the term ‘network protocol’.

95

Explain the purpose and use of common network protocols

including: • Ethernet • Wi-Fi • TCP (Transmission Control

Protocol) • UDP (User Datagram Protocol) • IP (Internet

Protocol) • HTTP (Hypertext Transfer Protocol) • HTTPS

(Hypertext Transfer Protocol Secure) • FTP (File Transfer

Protocol) • email protocols: • SMTP (Simple Mail Transfer

Protocol) • IMAP (Internet Message Access Protocol).

96
Understand the need for, and importance of, network

security.

97
Explain the following methods of network security: •

authentication • encryption • firewall • MAC address filtering.

98
Describe the 4 layer TCP/IP model: • application layer •

transport layer • network layer • data link layer

99
Understand that the HTTP, HTTPS, SMTP, IMAP and FTP

protocols operate at the application layer.

100
Understand that the TCP and UDP protocols operate at the

transport layer

101
Understand that the IP protocol operates at the network

layer.

Fundamentals of

cyber security
102

Be able to define the term cyber security and be able to

describe the main purposes of cyber security

103

Understand and be able to explain the following cyber

security threats: • social engineering techniques • malicious

code • weak and default passwords • misconfigured access

rights • removable media • unpatched and/or outdated

software.

104 Explain what penetration testing is and what it is used for.

105 Define the term social engineering.

106
Describe what social engineering is and how it can be

protected against.

107

Explain the following forms of social engineering: • blagging

(pretexting) • phishing • pharming • shouldering (or shoulder

surfing).
108 Define the term 'malware'.

109
Describe what malware is and how it can be protected

against.

110
Describe the following forms of malware: • computer virus •

trojan • spyware • adware.

Methods to

detect and

prevent cyber

security threats

111

Understand and be able to explain the following security

measures: • biometric measures (particularly for mobile

devices) • password systems • CAPTCHA (or similar) • using

email confirmations to confirm a user’s identity • automatic

software updates.

7
 -

 E
th

ic
al

, L
eg

al
 a

n
d

En
vi

ro
n

m
en

ta
l i

ss
u

es Ethical, legal and

environmental

impacts of digital

technology on

wider society,

including issues of

privacy

112

Explain the current ethical, legal and environmental impacts

and risks of digital technology on society. Where data privacy

issues arise these should be considered.

Design 113

Be aware that before constructing a solution, the solution

should be designed, for example planning data structures for

the data model, designing algorithms, designing an

appropriate modular structure for the solution and designing

the user interface.

Implementation 114

Be aware that the models and algorithms need to be

implemented in the form of data structures and code

(instructions) that a computer can understand.

5
 -

 F
u

n
d

am
en

ta
ls

 o
f

C
o

m
p

u
te

r
N

e
tw

o
rk

s
N

EA
:

P
ra

ct
ic

al
 p

ro
gr

am
m

in
g

re
p

o
rt

6

 -
 F

u
n

d
am

en
ta

ls
 o

f
C

yb
er

 S
ec

u
ri

ty

Social engineering

Malicious code

Cyber security

threats

Fundamentals of

computer

networks

Testing 115

Be aware that the implementation must be tested for the

presence of errors, using selected test data covering normal

(typical), boundary (extreme) and erroneous data.

Evaluation /

refining
116

Be aware that code created during implementation will often

require refining as a result of testing. Be aware of the

importance of assessing how well the solution meets the

requirements of the problem and how the solution could be

improved if the problem were to be revisited.

N
EA

:
P

ra
ct

ic
al

 p
ro

gr
am

m
in

g
re

p
o

rt

