RAG rating your knowledge

	The structure and functions of the musculoskeletal system	
Bones	Identification of the bones at the following locations:	
	 head/neck – cranium and vertebrae 	
	 shoulder – scapula and humerus 	
	• chest – ribs and sternum	
	• elbow – humerus, radius and ulna • hip – pelvis and femur	
	• knee – femur and tibia (students should also know that the patella	
	sits in front of the knee joint)	
	• ankle – tibia, fibula and talus.	
Structure of the	How the skeletal system provides a framework for movement (in	
skeleton	conjunction with the muscular system):	
	• the skeletal system allows movement at a joint	
	• the shape and type of the bones determine the amount of	
	movement (short bones enable finer controlled movements/long	
	bones enable gross movement)	
	flat bones for protection of vital organs	
	• the different joint types allow different types of movement	
	• the skeleton provides a point of attachment for muscles – when	
	muscles contract they pull the bone.	
Functions of the	• support	
skeleton	• protection of vital organs by flat bones	
Skeleton	movement	
	structural shape and points for attachment	
	mineral storage	
	blood cell production.	
	Functions should be applied to performance in physical activity.	
Muscles of the	Identification of the following muscles within the body:	
body	• latissimus dorsi • deltoid • rotator cuffs • pectorals • biceps •	
Souy	triceps • abdominals • hip flexors • gluteals • hamstring group (not	
	individual names) • quadriceps group (not individual names) •	
	gastrocnemius • tibialis anterior.	
	Students should be taught the role of tendons (attaching muscle to	
	bones).	
Structure of a	Identification of the following structures of a synovial joint and how	
synovial joint	they help to prevent injury:	
Synovial joint	• synovial membrane • synovial fluid • joint capsule • bursae •	
	cartilage • ligaments.	
Types of freely	Identification of the types of joints with reference to the following:	
movable joints	 elbow, knee and ankle – hinge joint 	
that allow	 hip and shoulder – ball and socket. 	
different		
movements		
	Linderstand that the following types of movement are linked to the	
How joints differ	Understand that the following types of movement are linked to the	
in design to allow	appropriate joint type, which enables that movement to take place:	
certain types of	• flexion/extension at the shoulder, elbow, hip and knee •	
	abduction/adduction at the shoulder • rotation of the shoulder •	
movement at a		
movement at a joint	plantar flexion/dorsiflexion at the ankle. Application to specific sporting actions is in movement analysis.	

The structure and functions of the cardio-respiratory system			
The pathway of	Identification of the pathway of air (limited to):		
air	 mouth/nose • trachea • bronchi • bronchioles • lungs • 		
	alveoli.		
Gaseous exchange	Gas exchange at the alveoli – features that assist in gaseous exchange:		
exchange	 large surface area of alveoli • moist thin walls (one cell thick) short distance for diffusion (short diffusion pathway) • lots of capillaries • large blood supply • movement of gas from high concentration to low concentration. Oxygen combines with haemoglobin in the red blood cells to form oxyhaemoglobin. Students should also know that haemoglobin can carry carbon dioxide. 		
Blood vessels	 Structure of arteries, capillaries and veins: size/diameter • wall thickness • valves in veins. How the structure of each blood vessel relates to the function: • carrying oxygenated/deoxygenated blood to/ from the heart • gas exchange • blood pressure • redistribution of blood during exercise (vasoconstriction and vasodilation). Students should be taught the names of the arteries and the veins associated with blood entering and leaving the heart. 		
Structure of the heart	Structure of the heart: • atria (left and right atria) • ventricles (left and right ventricles).		
The cardiac cycle and the pathway of the blood	The order of the cardiac cycle, including diastole (filling) and systole (ejection) of the chambers. This starts from a specified chamber of the heart, eg the cardiac cycle starting at the right ventricle. Pathway of the blood: • deoxygenated blood into right atrium • then into the right ventricle • the pulmonary artery then transports deoxygenated blood to the lungs • gas exchange occurs (blood is oxygenated) • pulmonary vein transports oxygenated blood back to the left atrium • then into the left ventricle • before oxygenated blood is ejected and transported to the body via the aorta. Valve names are not required but students should be taught that valves open due to pressure and close to prevent backflow.		

Canalia a sustant	Condise submit stable values and beautists and the	
Cardiac output,	Cardiac output, stroke volume and heart rate, and the	
stroke volume	relationship between them.	
and heart rate	Cardiac output (Q) = stroke volume x heart rate. Students	
	should be taught how to interpret heart rate graphs, including	
	an anticipatory rise, and changes in intensity.	
Mechanics of	Inhaling (at rest) with reference to the roles of the:	
breathing – the	 intercostals rib cage diaphragm. 	
interaction of	Exhaling (at rest) with reference to the roles of the:	
the intercostal	 intercostals rib cage diaphragm. 	
muscles, ribs	Lungs can expand more during exercise (inspiration) due to the	
and diaphragm	use of pectorals and sternocleidomastoid.	
in breathing	During exercise (expiration), the rib cage is pulled down quicker	
	to force air out quicker due to use of the abdominal muscles.	
	Changes in air pressure cause the inhalation and exhalation.	
Interpretation	Identification of the following volumes on a spirometer trace	
of a spirometer	and an understanding of how these may change from rest to	
trace	exercise:	
	 tidal volume • expiratory reserve volume • inspiratory 	
	reserve volume • residual volume.	
	Interpretation and explanation of a spirometer trace (and	
	continue a trace on paper) to reflect the difference in a trace	
	between rest and the onset of exercise.	

Anaerobic and aerobic exercise			
Understanding the terms	Definition of the terms:		
aerobic exercise (in the	 aerobic exercise anaerobic exercise Summary of 		
presence of oxygen) and	aerobic exercise (glucose + oxygen \rightarrow energy + carbon		
anaerobic exercise (in the	dioxide + water). Summary of anaerobic exercise		
absence of enough	(glucose → energy + lactic acid).		
oxygen)			
The use of aerobic and	Link practical examples of sporting situations to		
anaerobic exercise in	aerobic or anaerobic exercise.		
practical examples of	Identification of the duration and/or intensity of a		
differing intensities	physical activity in order to identify and justify why it		
	would be aerobic or anaerobic, eg marathon (aerobic),		
	sprint (anaerobic).		
Excess post-exercise	Definition of the term EPOC (oxygen debt).		
oxygen consumption	An understanding that EPOC (oxygen debt) is caused		
(EPOC)/oxygen debt as	by anaerobic exercise (producing lactic acid) and		
the result of muscles	requires the performer to maintain increased		
respiring anaerobically	breathing rate after exercise to repay the debt.		

during vigorous e and producing lac			
The recovery process from vigorous exercise	reasons f • cool do (blood flo diet – ref baths/ma soreness Students	wing methods to recover from exercise, including the for their use: bwn – maintain elevated breathing rate/ heart rate bw), stretching, removal of lactic acid • manipulation of hydration, carbohydrates for energy • ice assage – prevention of delayed onset of muscle (DOMS). should be taught to evaluate the use of these , justifying their relevance to different sporting	

The short and long term effects of exercise			
Immediate	 hot/sweaty/red skin 		
effects of	 increase in depth and frequency of breathing 		
exercise (during	 increased heart rate. 		
exercise)			
Short-term	• tiredness/fatigue		
effects of	 light headedness 		
exercise (24 to	• nausea		
36 hours after	 aching/delayed onset of muscle soreness (DOMS)/cramp. 		
exercise)			
Long-term	 body shape may change improvements in specific 		
effects of	components of fitness • build muscle strength • improve		
exercise	muscular endurance • improve speed • improve suppleness •		
(months and	build cardio-vascular endurance • improve stamina • increase in		
years of	the size of the heart (hypertrophy) • lower resting heart rate		
exercising)	(bradycardia).		
	Students should be taught the components of fitness to		
	understand the long term effects of exercise.		

Lever systems, examples of their use in activity and the mechanical advantage they provide in				
	movement			
First, second	Identification of first, second and third class lever systems.			
and third class	Basic drawings of the three classes of lever to illustrate the			
lever systems	positioning of: • fulcrum • load (resistance) • effort.			
within sporting	Draw linear versions of a lever, showing the positioning of the			
examples	fulcrum, load/resistance and effort. Students do not need to be			
	taught to draw anatomical body parts but must be able to link			
	the correct lever to a sporting movement or action.			

	Internr	etation of sporting movements or actions which involve	
	flexion or extension of the elbow and/or knee, and plantar or		
		exion at the ankle.	
N A a ala a u i a a l			
Mechanical		he effort arm and load/resistance arm on the three	
advantage – an		of lever.	
understanding		nical advantage = effort arm ÷ weight (resistance) arm.	
of mechanical		ng of the effort arm and resistance arm on lever	
advantage in		gs, and interpretation of the mechanical advantage of	
relation to the	that lev	/er	
three lever			
systems			
Analysis of basic		of movement: • flexion/extension at the shoulder, elbow,	
movements in	hip and	knee • abduction/adduction at the shoulder • rotation	
sporting	of the s	of the shoulder • plantar flexion/dorsiflexion at the ankle.	
examples	This se	ction links specific sporting actions to the types of	
	mover	nent. Applied anatomy and physiology links the joint type	
	to the t	type of movement only.	
	This sh	ould include but not be limited to the following sporting	
	actions	: • elbow action in push-ups/football throw in • hip,	
	knee a	nd ankle action in running, kicking, standing vertical	
	jump, k	pasic squats • shoulder action during cricket bowling	
	(overar	m rotation).	
		Planes and axes of movement	
Identification of the	ne	Planes (frontal, transverse, sagittal) and axes	
relevant planes (frontal,		(longitudinal, transverse, sagittal) should be related to	
transverse, sagittal) and		sporting actions. Teaching of these planes/axes should	
axes (longitudinal,		include but not be limited to the following sporting	
transverse, sagittal) of		actions: • front somersault/forward roll/running action	
movement used whilst		 360° twist (ice skating spin)/discus thrower rotating in 	
performing sporting		circle effort • cartwheel.	
actions			

The relationship between health and fitness and the role that exercise plays in both		
Health and	Definitions of health and fitness.	
fitness		
The relationship	The relationship between health and fitness.	
between health	Decreased fitness because of ill health, ie poor health can result	
and fitness	in an inability to train, lowers fitness.	
	Increased fitness despite ill health, ie unhealthy but able to	
	train, increases fitness.	

The compor	nents of fitness, benefits for sport and how fitness is measured and improved	<u>k</u>
The	Definitions of the following components of fitness:	
components of	• agility • balance • cardiovascular endurance (aerobic power) •	
fitness	coordination • flexibility • muscular endurance •	
	power/explosive strength (anaerobic power) • reaction time •	
	strength (maximal, static, dynamic and explosive) • speed.	
Linking sports	Understand and justify why the components of fitness (as	
and physical	stated above) may or may not be needed when performing	
activity to the		
	certain physical activities and sports.	
required		
components of		
fitness		
Reasons for and	Reasons for fitness testing:	
limitations of	• to identify strengths and/or weaknesses in a performance/the	
fitness testing	success of a training programme • to monitor improvement • to	
	show a starting level of fitness • to inform training	
	requirements • to compare against norms of the group/	
	national averages • to motivate/sets goals • to provide variety	
	to a training programme. Limitations of fitness testing: • tests	
	are often not sport specific/too general • they do not replicate	
	movements of activity • they do not replicate competitive	
	conditions required in sports • many do not use direct	
	measuring/submaximal – therefore inaccurate/some need	
	motivation/some have questionable reliability • they must be	
	carried out with the correct procedures to increase validity	
Measuring the	Knowledge of the main procedures of the tests used to measure	
components of	the following components of fitness:	
fitness	 agility – Illinois Agility Test balance – Stork Balance 	
	cardiovascular endurance (aerobic power) – Multi Stage Fitness	
	Test • coordination – Wall Toss Test • flexibility – Sit and Reach	
	Test • muscular endurance – Sit-Up Bleep Test •	
	power/explosive strength (anaerobic power) – Vertical Jump	
	Test • reaction time – Ruler Drop Test • maximal strength – One	
	Rep Max Test • speed – 30 Metre Sprint Test • strength –	
	Handgrip Dynamometer Test.	
	Testing procedures refers to 'how each test is carried out' and	
	includes reference to how the test is organised (when	
	applicable) in relation to the following:	
	• the facilities and the equipment needed to set it up • the	
	procedures that have to be followed – the tasks and the rules •	
	the measurements that are used to score the performance •	
	the way conclusions are drawn from the scores/results.	
	Evaluate whether or not these tests are relevant to performers	
	in different sporting activities.	
Demonstration		
of how data are	Understanding of how test scores are measured/recorded (eg	
or now uata are	in seconds, levels, centimetres, numbers).	

collected for	Definitions of the terms qualitative and quantitative, in relation	
fitness testing	to the collection of fitness testing data.	
	Understanding that the quantitative data collected during	
	fitness testing can be compared to national averages.	

The principles of training and their application to personal exercise/training programmes		
The principles	Key principles of training. SPORT to include:	
of training and	 specificity • progressive overload • reversibility • tedium. 	
overload	Key principles of overload. FITT to include:	
	• frequency • intensity • time • type.	
	Students should be taught the terms and what they mean	
Application of	How the principles of training can be applied to bring about	
the principles	improvements in fitness.	
of training	Application of the principles to sporting examples.	
Types of	Understand the distinctions between different types of training.	
training	Circuit training – consider space available, equipment available,	
0	number of circuit stations, work:rest ratio, the content/demand	
	of the circuit can be altered in order to improve different	
	components of fitness.	
	Continuous training – sustained exercise at a constant rate	
	(steady state) without rests, involving aerobic demand for a	
	minimum of 20 minutes, eg running, swimming, rowing, cycling.	
	Fartlek training – varying speed, terrain and work:rest ratios.	
	Interval training/high intensity interval training – periods of	
	exercising hard, interspersed with periods of rest or low intensity	
	exercise.	
	Static stretching – a way to stretch to increase flexibility, held	
	(isometric) for up to 30 seconds, using correct technique,	
	advisable to avoid over stretching.	
	Weight training – choice of weight/exercise depends on fitness	
	aim, eg strength/power training or muscular endurance, the	
	importance of safe practice/lifting technique, the need for	
	spotters.	
	Plyometric training – use of plyometric exercises, eg bounding,	
	depth jumping, to increase power. Basic physiological	
	understanding (eccentric contraction followed by larger	
	concentric contraction).	
	Any training (and practice) method must take account of the	
	following: • the training purpose(s), training thresholds/ training	
	targets/training zones (see calculating intensities below) •	
	rest/recovery	
Identification	The advantages and disadvantages (the effects on the body) of	
of the	each type of training method stated above.	
advantages	Students should be taught to select and evaluate appropriate	
and	training methods for various (aerobic and anaerobic) fitness	
disadvantages	needs and make links to sporting activity, eg continuous training	
(the effects on	is fully appropriate to marathon runners.	
the body) of		
training types		

linked to	
specific aims	

How to optimise training and prevent injury			
Calculating Definition of training threshold.			
intensities to	Calculate the aerobic/anaerobic training zone: • calculate		
optimise	maximum heart rate (220 minus age) • calculate aerobic training		
training	zone (60–80% of maximal heart rate) • calculate anaerobic		
effectiveness	training zone (80–90% of maximal heart rate). For circuit training,		
encenveness	altering the time/rest/content of the circuit will determine the		
	fitness aim.		
	How to calculate one repetition maximum (one rep max) as part		
	of weight training and how to make use of one rep max, with		
	reference to: • strength/power training (high weight/low reps –		
	above 70% of one rep max, approximately three sets of 4–8 reps)		
	 muscular endurance (low weight/high reps – below 70% of one 		
	rep max, approximately three sets of 12–15 reps).		
Considerations	The training type/intensity should match the training purpose (eg		
to prevent	aerobic or anaerobic).		
injury	Where applicable, the following factors should be taken into		
ingur y	account in order to prevent injury:		
	• a warm up should be completed • over training should be		
	avoided, eg appropriate weight • appropriate clothing and		
	footwear should be worn • taping/bracing should be used as		
	necessary • hydration should be maintained • stretches should		
	not be overstretched or bounce • technique used should be		
	correct, eg lifting technique • appropriate rest in between		
	sessions to allow for recovery.		
Specific	How high altitude training is carried out:		
training	• train at high altitude • there is less oxygen in the air and oxygen		
techniques –	carrying capacity is reduced • the body compensates by making		
high altitude	more red blood cells to carry oxygen.		
training as a	Students should be taught to evaluate the benefits and the		
form of	limitations of altitude training for different sports performers.		
aerobic	Students do not need to be taught how to calculate intensities		
training	for altitude training.		
Seasonal	Names of the three training seasons:		
aspects	 pre-season/preparation competition/peak/playing season 		
	post-season/transition.		
	An understanding of what each of the seasons entails (aims): •		
	pre-season/preparation – general/aerobic fitness, specific fitness		
	needs • competition/peak/playing season – maintain fitness		
	levels, work on specific skills • post-season/transition – rest and		
	light aerobic training to maintain a level of general fitness.		
	An understanding of the benefits of each season to the		
	performer.		

Students should be taught to apply and justify the characteristics	
of the seasonal aspects to different sporting activities.	

Effective use of warm up and cool down		
Warming up	The constituent parts of warming up and cooling down.	
and cooling	Warming up should include: • gradual pulse raising activity •	
down	stretching • skill based practices/familiarisation • mental	
	preparation • increase amount of oxygen to the working muscles.	
	Cooling down should include: • maintain elevated breathing and	
	heart rate, eg walk, jog • gradual reduction in intensity •	
	stretching.	
	Students should be taught to understand and justify appropriate	
	elements of a warm up and a cool down for different sporting	
	activities.	
	The benefits of warming up: • effect on body temperature •	
	range of movement increased • gradual increase of effort to full	
	pace • psychological preparation • practice of movement skills	
	through the whole range of movement • injury prevention.	
	The benefits of cooling down: • allowing the body to recover •	
	the removal of lactic acid/CO2 /waste products • prevent	
	(delayed onset of) muscle soreness/ DOMS.	