	Physics Paper 2 Tick List		
P5 For	ices	<u> </u>	
1.	Describe the difference between scalar and vector quantities	T 7	
2.	Describe the difference between distance and displacement		
3.	Describe the displacement of an object in terms of both magnitude and direction		
4.	Describe the difference between speed and velocity		
5.	Describe and identify what contact and non-contact forces are	+	
6.	Describe the interaction between pairs of objects which produce a force on each object.	+	
	using Newton's third Law		
7.	Describe what a resultant force is		
8.	Calculate the resultant force of two forces that act in a straight line		
9.	Describe examples of the forces acting on an isolated object or system		
10.	Draw free body diagrams to scale of the forces acting on an object or system		
11.	Describe how a force can be resolved		
12.	Draw vector diagrams to illustrate the resolution of forces and equilibrium		
	situations		
13.	Use vector diagrams to determine the resultant of two forces, including the		
	magnitude and direction of the force.		
14.	Describe what weight is		
15.	Describe the difference between weight and mass and the relationship between the two		
16.	Identify the equipment used to measure weight		
17.	Describe what causes the force of gravity close to Earth		
18.	Recall and/or rearrange the equation to calculate weight and identify its units		
19.	Describe what the centre of mass is		
20.	Explain how to find the centre of mass for a regular object		
21.	Explain how to find the centre of mass for an irregular object		
	Motion		
22.	Recall and rearrange the equation to calculate speed and include the units		
23.	Calculate the average speed of an object in non-uniform motion		
24.	Identify typical values for the speed of a person walking, running and cycling and of		
	forms of transportation		
25.	Explain, using examples, why an object travelling in a circular motion has a		
	constant speed but a changing velocity		
26.	State Newton's First Law		
27.	Describe what inertia is		
28.	Describe the motion of an object on a distance-time graph		
29.	Use a distance-time graph to calculate speed		
30.	Draw distance-time graphs and extract and interpret lines and slopes of distance time		
	graphs		
31.	Draw tangent lines on a distance-time graph to determine the acceleration of an		
	object		
32.	Describe what acceleration is and identify it units		
33.	Recall and rearrange the equation, using changing velocity to calculate acceleration		
34.	Estimate the magnitude of everyday accelerations		
35.	Describe the motion of an object using a velocity time graph		
36.	Draw velocity time graphs from measurements		
37.	Use the gradient of velocity time graph to calculate acceleration		
38.	Calculate the distance travelled by an object using a velocity time graph - both		
	linear and non linear graphs	+	
39.	Use and rearrange the correct equation on the Physics sheet to calculate uniform		
40	decereration Describe the people ration of an object falling free burgers the Forthly surface		──
40.	Describe the acceleration of an object failing freely hear the Earth's surface		
41.	Describe and explain what terminal valuation is		──
42.	Describe and explain what terminal velocity is		──
43.	Explain now an object reaches terminal velocity		
44.	Draw and interpret velocity time graphs for objects that reach terminal velocity.		

Braking Forces						
45.	Describe what stopping distance, thinking distance and braking distance is					
46.	Describe what external factors might affect stopping, thinking and braking distances					
47.	Explain the implications for safety of the factors which affect the braking distance					
48.	Explain the forces involved in braking & stopping distances					
49.	Recall and rearrange the equation to calculate acceleration using resultant force and					
	mass					
50.	Explain what inertial mass is a measure of					
51	Describe the relationship between the speed of a vehicle and the stopping distance for a					
511	given braking force					
52	Identify the range of typical reaction times					
52.	Describe methods used to measure human reaction time					
54	Describe what happens in terms of energy and work done, what happens when a force is					
54.	applied to the brakes of a vehicle					
55	Define work done and identify it units					
54	Possill and rearrange the equation to calculate work done					
50.	Recall and realizinge the equation to calculate work done					
57.	Describe the energy transferred when work is done					
58.	Describe the effect of work done against friction on the temperature of an object or					
	system			l		
50	Momentum					
59.	Describe what momentum is					
60.	Recall and rearrange the equation to calculate momentum					
61.	Describe the conservation of momentum					
62.	Describe and explain examples of momentum in an event, such as a collision			L		
	Forces & elasticity					
63.	Describe Hooke's Law					
64.	Recall and rearrange the equation to calculate the force applied to a spring using the					
	spring constant and the extension					
65.	Describe what happens when a force is applied to an elastic object, in terms of work					
	done and elastic potential energy (both stretching and compression)					
66.	Describe difference between elastic deformation and inelastic deformation caused by					
	stretching forces					
67.	Describe the difference between a linear and non-linear relationship between a force					
	and extension					
68.	Describe the relationship between work done and elastic potential energy of spring that					
	has been either stretched or compressed					
69.	Use and rearrange the equation on the physics sheet to calculate the elastic potential					
	energy and/or the work done on a spring					
P7 Way	/es					
70.	Describe the difference between transverse & longitudinal wave					
71.	Describe what a mechanical wave is, including sound waves					
72.	Draw and label a diagram of a transverse and longitudinal wave					
73.	Recall, rearrange & use the equation that links wave speed, frequency and wavelength,					
	and give units					
74.	Use & rearrange the equation that links time period & frequency of wave (GIVEN on					
	equation sheet)					
75.	List the order of electromagnetic waves in order of wavelength, energy and frequency					
76.	Identify the uses and hazards of all the electromagnetic waves					
77.	Describe how radio waves are produced and what happens when they are absorbed					
78.	Explain why each type of electromagnetic wave is suitable for its application					
P8 Mag	netism & Electromagnetism					
79.	Describe the attraction and repulsion between like and unlike poles for permanent					
	magnets					
80.	Describe the difference between permanent and induced magnets					
81.	Describe the factors that affect the strength of a magnetic field					
82.	Describe how to plot the magnetic field pattern of a magnet using a compass					
83.	Draw the magnetic field pattern of a bar magnet showing the strength and direction					
	change from one to another					
84.	Explain how the behaviour of a compass is related to evidence that the core of the Earth					

	is magnetic		
85.	Describe how the magnetic effect of a current can be demonstrated		
86.	Draw the magnetic field pattern for a straight wire carrying a current and for a solenoid		
87.	Describe what a solenoid and an electromagnet is		
88.	Explain how to increase the strength of an electromagnet		